<acronym id="xonnx"></acronym>
      <td id="xonnx"></td>
    1. <pre id="xonnx"></pre>

      1. 專注電子技術學習與研究
        當前位置:單片機教程網 >> MCU設計實例 >> 瀏覽文章

        cc1101的詳解及單片機程序

        作者:huqin   來源:本站原創   點擊數:  更新時間:2014年11月12日   【字體:

        1.初始化SPI,MCU各引腳。

            
                當有數據接收或發送狀態聲明時,有中斷和查詢兩種方式。GDO0與GDO2引腳輸出至MCU引腳,若要用中斷則要接至MCU外部中斷引腳,查詢時則可用GPIO。
         
            2.復位CC1101。
         
            3.初始化CC1101。(寫操作時可從SO中讀出CC1101狀態)
         
                初始化后CC1100為IDLE狀態.
            
            4.狀態機轉換,寫/讀FIFO數據。
         
                每次寫操作時SO返回的值為寫操作前的CC1100狀態值,具體值見Table20;讀狀態命令為當前CC1100狀態值,具體值見寄存器0X35說明;注意兩者區別。
         
        快速認識Cc1100
         
                     Cc1100可以工作在同步模式下,代價是:MCU自己控制前導碼。本系統中,Cc1100將工作在異步模式下。
          
        知識點
         
                     Head Byte:在 引腳 Cc1100.Csn 有效后,通過SPI總線寫入 Cc1100的第一個字節。
         
                     Status Byte: 在寫入 HeadByte 的同時,MCU 得到 Status Byte。
         
                     Burst Bit:在 Head Byte 中的一個 Bit, 有效值=="1",無效值=="0"
         
        GDO0:
                     GDO0可用作FIFO狀態輸出,載波感應(CS),時鐘輸出,GDO0 腳也能用作集成于芯片的模擬溫度傳感器(未用).配置寄存器為IOCFG0(0X02),現在配置為RX模式下數據狀態反應輸出.
         
        GDO1:
                     GDO1與SPI的SO共用引腳,默認狀態下為3態,當CSn為低電平時,此引腳SPI的SO功能生效。配置寄存器為IOCFG0(0X01),現在配置為空閑狀態下3態,SPI模式下SO.
         
        GDO2:
         
                     GDO2可用作FIFO狀態輸出,載波感應(CS),時鐘輸出,配置寄存器為IOCFG0(0X00),現在配置為載波感應(CS)輸出.
         
        TXOFF_MODE/RXOFF_MODE:
         
                     注意,此配置為在數據包被發送/接收后狀態機狀態決定位,僅是在發生發送或者接收后動作;當為IDLE時發SRX/STX后狀態機不按此配置運行。TX/RX后要校準。
         
        功率放大控制(PATABLE):
         
                     0X3E為功率寫入地址,0X22為為功率配置寄存器。PATABLE 是一個8字節表,定義了8個PA 功率值。這個表從最低位(0)到最高位(7)可讀和寫,一次一位。一個索引計數器用來控制對這個表的訪問。
         
                     每讀出或寫入表中的一個字節,計數器就加 1。當 CSn 為高時,計數值置為最小值。當達到最大值時,計數器由零重新開始計數。
            
                     FREND0.PA_POWER(2:0)從8個功率值中選擇1個,且振幅為相應數等級。
         
         
        異步模式:
                     在此模式下,CC1101中的MCU的若干支持機制會停用,包括數據包硬件處理,FIFO 緩沖,數據白化,交錯(interleaver)和前向糾錯(FEC) ,曼徹斯特編碼(Manchester encoding);
         
                     MSK不支持異步模式;
         
                     PKTCTRL0.PKT_FORMAT == 3 使能異步模式,GDO0為input,GDO0, GDO1或GDO2為output 相應配置位為IOCFG0.GDO0_CFG, IOCFG1.GDO1_CFG IOCFG2.GDO2_CFG;
         
        電磁波激活(WOR):
         
                     在WOR濾波使用之前RC振蕩器必須啟用,RC振蕩器是 WOR 定時器的時鐘源.在WOR下,收到信號后會自動進入RX模式.
         
        載波感應(CS)與RSSI:
         
                     因此兩配置相互有連系,所以一起論述.
         
                     RSSI 只能在RX模式下才能有效,作用為對當前信號質量評估,信號質量可從RSSI寄存器讀出.RSSI信號強度可從0X34取出.
         
                     RSSI(信號強度)計算公式: 注:此為433M下,結果為負數,
         
                                                    RSSI_dBm=(RSSI-256)/2-74 (RSSI>=128)
         
                                                    RSSI_dBm= (RSSI/2)-74      (RSSI<128)
         
                     CS 只在RX模式下才能有效,當信號質量高于設定門限值時,CS狀態將會被聲明。現在配置為GDO2輸出感應狀態.
         
                     CS門限值由以下4個寄存器決定
         
                     ?? AGCCTRL2.MAX_LNA_GAIN  
                     ?? AGCCTRL2.MAX_DVGA_GAIN
                     ?? AGCCTRL1.CARRIER_SENSE_ABS_THR
                     ?? AGCCTRL2.MAGN_TARGET
                     
                     CS門限值計算公式:     表默認門限值 + (MAGN_TARGET-33) + CARRIER_SENSE_ABS_THR.
         
                                                   表默認門限值見table29,table30. 由AGCCTRL2.MAX_LNA_GAIN   AGCCTRL2.MAX_DVGA_GAIN 決定.
         
                                                  默認門限值表只給了兩個數據速率下的值,其余由自己測.我們對此要求不是太高,可以參考用這個表.
         
                                                   CARRIER_SENSE_ABS_THR為對應表中-7~7的值,最后單位為dBm.
         
                                                   Example:
         
                                                                 在250K下AGCCTRL2.MAX_LNA_GAIN = 00   AGCCTRL2.MAX_DVGA_GAIN = 00 得出表中為-90.5
         
                                                                  MAGN_TARGET = 7(42), CARRIER_SENSE_ABS_THR = 1(1)
         
                                                                 門限為-90.5 + (42-33) + 1= -82.5dBm            
         
        清理信道訪問(CCA):

                     清理信道訪問用來指示當前信號是空閑還是忙。當忙時是否丟棄當前數據,寄存器MCSM1.CCA_MODE決定是否丟棄.默認配置為保留當前寄存器中數據,丟棄下一步要處理數據.

         

        數據FIFO:

                  

         
                     當TX操作時,由MCU控制,溢出時CC1101出錯;當RX操作時,讀空時CC1101出錯
         
                     RX FIFO 和 TX FIFO 中的字節數也能分別從狀態寄存器 RXBYTES.NUM_RXBYTES和TXBYTES.NUM_TXBYTES 中讀出
         
                     4 位 FIFOTHR.FIFO_THR 設置用來控制FIFO 門限點
         
                     讀單字節時,,CSn繼續保持低;。突發訪問方式允許一地址字節,然后是連續的數據字節,直到通過設置 CSn 為高來斷訪問
                    
                     當寫操作時,最后一個字節被傳送至 SI 腳后, 被 SO腳接收的狀態位會表明在 TX FIFO中只有一個字節是空閑,
         
        寄存器分類
                 
          Configration Registers

        共47個,可讀,可寫

        0x00~0x2E

           
          Status Registers

        共14個,只讀

        0x30~0x3D

           
          Command Strobe

        共14個,只寫

        尋址空間:0x30~0x3D

         

        14個地址,對相應的地址進行寫,

        就相當于激活了對應的命令

        本系統是用到的Strobe:

        CC1100_STROBE_RESET
        CC1100_STROBE_ENTER_RX_MODE
        CC1100_STROBE_ENTER_TX_MODE
        CC1100_COMMAND_STROBE_SIDLE
        CC1100_COMMAND_STROBE_SFRX

         
          TX FIFO 共64個,只寫    
          RX FIFO 共64個,只讀    
                 
         
         
        Status(Command)Registers操作:
         
             當地址為0X30~0X3D時
         
             burst為1:對Status Registers的操作
         
                           Status Registers只可讀,且只能一次讀一個字節,不可寫                 
             burst為0:對Command Registers操作
         
                         寄存器的訪問和一個寄存器的操作一樣,但沒有數據被傳輸.寫完畢后,CC1100便執行相應操作.
         
         
         
         
             讀寫FIFO,有兩種模式:單字節讀寫;Burst讀寫。
                 單字節讀寫時序:
                     1 Cc1100.Csn有效。
                     2 寫入Head Byte。
                      3 讀、寫一個1字節。
                     4 Cc1100.Csn無效。
        #include <reg52.h>
        #include <intrins.h>
        #define  INT8U  unsigned char
        #define  INT16U  unsigned int
        #define  WRITE_BURST      0x40      //連續寫入
        #define  READ_SINGLE      0x80      //讀
        #define  READ_BURST       0xC0      //連續讀
        #define  BYTES_IN_RXFIFO     0x7F        //接收緩沖區的有效字節數
        #define  CRC_OK              0x80       //CRC校驗通過位標志
        //*****************************************************************************************
        sbit  GDO0 =P1^3;
        sbit  GDO2 =P3^2;
        sbit MISO =P1^6;
        sbit MOSI =P1^5;
        sbit SCK =P1^7;
        sbit CSN =P1^2;
        //*****************************************************************************************
        sbit    LED2    =P3^4;
        sbit    LED1    =P3^5;
        sbit    KEY1    =P3^6;
        sbit    KEY2    =P3^7;
        //*****************************************************************************************
        sbit led3=P2^3;
        sbit led2=P2^2;
        sbit led1=P2^1;
        sbit led0=P2^0;
        //*****************************************************************************************
        //INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60};
        INT8U PaTabel[8] = {0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0};//修改發射功率
        //*****************************************************************************************
        void SpiInit(void);
        void CpuInit(void);
        void RESET_CC1100(void);
        void POWER_UP_RESET_CC1100(void);
        void halSpiWriteReg(INT8U addr, INT8U value);
        void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count);
        void halSpiStrobe(INT8U strobe);
        INT8U halSpiReadReg(INT8U addr);
        void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count);
        INT8U halSpiReadStatus(INT8U addr);
        void halRfWriteRfSettings(void);
        void halRfSendPacket(INT8U *txBuffer, INT8U size);
        INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length); 
        //*****************************************************************************************
        // CC1100 STROBE, CONTROL AND STATUS REGSITER
        #define CCxxx0_IOCFG2       0x00        // GDO2 output pin configuration
        #define CCxxx0_IOCFG1       0x01        // GDO1 output pin configuration
        #define CCxxx0_IOCFG0       0x02        // GDO0 output pin configuration
        #define CCxxx0_FIFOTHR      0x03        // RX FIFO and TX FIFO thresholds
        #define CCxxx0_SYNC1        0x04        // Sync word, high INT8U
        #define CCxxx0_SYNC0        0x05        // Sync word, low INT8U
        #define CCxxx0_PKTLEN       0x06        // Packet length
        #define CCxxx0_PKTCTRL1     0x07        // Packet automation control
        #define CCxxx0_PKTCTRL0     0x08        // Packet automation control
        #define CCxxx0_ADDR         0x09        // Device address
        #define CCxxx0_CHANNR       0x0A        // Channel number
        #define CCxxx0_FSCTRL1      0x0B        // Frequency synthesizer control
        #define CCxxx0_FSCTRL0      0x0C        // Frequency synthesizer control
        #define CCxxx0_FREQ2        0x0D        // Frequency control word, high INT8U
        #define CCxxx0_FREQ1        0x0E        // Frequency control word, middle INT8U
        #define CCxxx0_FREQ0        0x0F        // Frequency control word, low INT8U
        #define CCxxx0_MDMCFG4      0x10        // Modem configuration
        #define CCxxx0_MDMCFG3      0x11        // Modem configuration
        #define CCxxx0_MDMCFG2      0x12        // Modem configuration
        #define CCxxx0_MDMCFG1      0x13        // Modem configuration
        #define CCxxx0_MDMCFG0      0x14        // Modem configuration
        #define CCxxx0_DEVIATN      0x15        // Modem deviation setting
        #define CCxxx0_MCSM2        0x16        // Main Radio Control State Machine configuration
        #define CCxxx0_MCSM1        0x17        // Main Radio Control State Machine configuration
        #define CCxxx0_MCSM0        0x18        // Main Radio Control State Machine configuration
        #define CCxxx0_FOCCFG       0x19        // Frequency Offset Compensation configuration
        #define CCxxx0_BSCFG        0x1A        // Bit Synchronization configuration
        #define CCxxx0_AGCCTRL2     0x1B        // AGC control
        #define CCxxx0_AGCCTRL1     0x1C        // AGC control
        #define CCxxx0_AGCCTRL0     0x1D        // AGC control
        #define CCxxx0_WOREVT1      0x1E        // High INT8U Event 0 timeout
        #define CCxxx0_WOREVT0      0x1F        // Low INT8U Event 0 timeout
        #define CCxxx0_WORCTRL      0x20        // Wake On Radio control
        #define CCxxx0_FREND1       0x21        // Front end RX configuration
        #define CCxxx0_FREND0       0x22        // Front end TX configuration
        #define CCxxx0_FSCAL3       0x23        // Frequency synthesizer calibration
        #define CCxxx0_FSCAL2       0x24        // Frequency synthesizer calibration
        #define CCxxx0_FSCAL1       0x25        // Frequency synthesizer calibration
        #define CCxxx0_FSCAL0       0x26        // Frequency synthesizer calibration
        #define CCxxx0_RCCTRL1      0x27        // RC oscillator configuration
        #define CCxxx0_RCCTRL0      0x28        // RC oscillator configuration
        #define CCxxx0_FSTEST       0x29        // Frequency synthesizer calibration control
        #define CCxxx0_PTEST        0x2A        // Production test
        #define CCxxx0_AGCTEST      0x2B        // AGC test
        #define CCxxx0_TEST2        0x2C        // Various test settings
        #define CCxxx0_TEST1        0x2D        // Various test settings
        #define CCxxx0_TEST0        0x2E        // Various test settings
        // Strobe commands
        #define CCxxx0_SRES         0x30        // Reset chip.
        #define CCxxx0_SFSTXON      0x31        // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).
                                                // If in RX/TX: Go to a wait state where only the synthesizer is
                                                // running (for quick RX / TX turnaround).
        #define CCxxx0_SXOFF        0x32        // Turn off crystal oscillator.
        #define CCxxx0_SCAL         0x33        // Calibrate frequency synthesizer and turn it off
                                                // (enables quick start).
        #define CCxxx0_SRX          0x34        // Enable RX. Perform calibration first if coming from IDLE and
                                                // MCSM0.FS_AUTOCAL=1.
        #define CCxxx0_STX          0x35        // In IDLE state: Enable TX. Perform calibration first if
                                                // MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:
                                                // Only go to TX if channel is clear.
        #define CCxxx0_SIDLE        0x36        // Exit RX / TX, turn off frequency synthesizer and exit
                                                // Wake-On-Radio mode if applicable.
        #define CCxxx0_SAFC         0x37        // Perform AFC adjustment of the frequency synthesizer
        #define CCxxx0_SWOR         0x38        // Start automatic RX polling sequence (Wake-on-Radio)
        #define CCxxx0_SPWD         0x39        // Enter power down mode when CSn goes high.
        #define CCxxx0_SFRX         0x3A        // Flush the RX FIFO buffer.
        #define CCxxx0_SFTX         0x3B        // Flush the TX FIFO buffer.
        #define CCxxx0_SWORRST      0x3C        // Reset real time clock.
        #define CCxxx0_SNOP         0x3D        // No operation. May be used to pad strobe commands to two
                                                // INT8Us for simpler software.
        #define CCxxx0_PARTNUM      0x30
        #define CCxxx0_VERSION      0x31
        #define CCxxx0_FREQEST      0x32
        #define CCxxx0_LQI          0x33
        #define CCxxx0_RSSI         0x34
        #define CCxxx0_MARCSTATE    0x35
        #define CCxxx0_WORTIME1     0x36
        #define CCxxx0_WORTIME0     0x37
        #define CCxxx0_PKTSTATUS    0x38
        #define CCxxx0_VCO_VC_DAC   0x39
        #define CCxxx0_TXBYTES      0x3A
        #define CCxxx0_RXBYTES      0x3B
        #define CCxxx0_PATABLE      0x3E
        #define CCxxx0_TXFIFO       0x3F
        #define CCxxx0_RXFIFO       0x3F
        // RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers
        typedef struct S_RF_SETTINGS
        {
            INT8U FSCTRL2;   //自已加的
            INT8U FSCTRL1;   // Frequency synthesizer control.
            INT8U FSCTRL0;   // Frequency synthesizer control.
            INT8U FREQ2;     // Frequency control word, high INT8U.
            INT8U FREQ1;     // Frequency control word, middle INT8U.
            INT8U FREQ0;     // Frequency control word, low INT8U.
            INT8U MDMCFG4;   // Modem configuration.
            INT8U MDMCFG3;   // Modem configuration.
            INT8U MDMCFG2;   // Modem configuration.
            INT8U MDMCFG1;   // Modem configuration.
            INT8U MDMCFG0;   // Modem configuration.
            INT8U CHANNR;    // Channel number.
            INT8U DEVIATN;   // Modem deviation setting (when FSK modulation is enabled).
            INT8U FREND1;    // Front end RX configuration.
            INT8U FREND0;    // Front end RX configuration.
            INT8U MCSM0;     // Main Radio Control State Machine configuration.
            INT8U FOCCFG;    // Frequency Offset Compensation Configuration.
            INT8U BSCFG;     // Bit synchronization Configuration.
            INT8U AGCCTRL2;  // AGC control.
            INT8U AGCCTRL1;  // AGC control.
            INT8U AGCCTRL0;  // AGC control.
            INT8U FSCAL3;    // Frequency synthesizer calibration.
            INT8U FSCAL2;    // Frequency synthesizer calibration.
            INT8U FSCAL1;    // Frequency synthesizer calibration.
            INT8U FSCAL0;    // Frequency synthesizer calibration.
            INT8U FSTEST;    // Frequency synthesizer calibration control
            INT8U TEST2;     // Various test settings.
            INT8U TEST1;     // Various test settings.
            INT8U TEST0;     // Various test settings.
            INT8U IOCFG2;    // GDO2 output pin configuration
            INT8U IOCFG0;    // GDO0 output pin configuration
            INT8U PKTCTRL1;  // Packet automation control.
            INT8U PKTCTRL0;  // Packet automation control.
            INT8U ADDR;      // Device address.
            INT8U PKTLEN;    // Packet length.
        } RF_SETTINGS;
        /////////////////////////////////////////////////////////////////
        const RF_SETTINGS rfSettings =
        {
         0x00,
            0x08,   // FSCTRL1   Frequency synthesizer control.
            0x00,   // FSCTRL0   Frequency synthesizer control.
            0x10,   // FREQ2     Frequency control word, high byte.
            0xA7,   // FREQ1     Frequency control word, middle byte.
            0x62,   // FREQ0     Frequency control word, low byte.
           
         0x5B,   // MDMCFG4   Modem configuration.
         //0xf6, // MDMCFG4 chang by allen
            0xF8,   // MDMCFG3   Modem configuration. 
         //0x83, // MDMCFG3 chang by allen   data rate = 2.398K
            0x03,   // MDMCFG2   Modem configuration.
            0x22,   // MDMCFG1   Modem configuration.
            0xF8,   // MDMCFG0   Modem configuration.
            0x00,   // CHANNR    Channel number.
            0x47,   // DEVIATN   Modem deviation setting (when FSK modulation is enabled).
            0xB6,   // FREND1    Front end RX configuration.
            0x10,   // FREND0    Front end RX configuration.
            0x18,   // MCSM0     Main Radio Control State Machine configuration.
            0x1D,   // FOCCFG    Frequency Offset Compensation Configuration.
            0x1C,   // BSCFG     Bit synchronization Configuration.
            0xC7,   // AGCCTRL2  AGC control.
            0x00,   // AGCCTRL1  AGC control.
            0xB2,   // AGCCTRL0  AGC control.
            0xEA,   // FSCAL3    Frequency synthesizer calibration.
            0x2A,   // FSCAL2    Frequency synthesizer calibration.
            0x00,   // FSCAL1    Frequency synthesizer calibration.
            0x11,   // FSCAL0    Frequency synthesizer calibration.
            0x59,   // FSTEST    Frequency synthesizer calibration.
            0x81,   // TEST2     Various test settings.
            0x35,   // TEST1     Various test settings.
            0x09,   // TEST0     Various test settings.
            0x0B,   // IOCFG2    GDO2 output pin configuration.
            0x06,   // IOCFG0D   GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation.
            0x04,   // PKTCTRL1  Packet automation control.
            //0x05,   // PKTCTRL0  Packet automation control.
         0x01, //PKTCTRL0  crc disable chang by allen at 09.12.24
            0x00,   // ADDR      Device address.
            0x0c    // PKTLEN    Packet length.
        };
        //*****************************************************************************************
        //函數名:delay(unsigned int s)
        //輸入:時間
        //輸出:無
        //功能描述:普通廷時,內部用
        //*****************************************************************************************  
        static void delay(unsigned int s)
        {
         unsigned int i;
         for(i=0; i<s; i++);
         for(i=0; i<s; i++);
        }
        
        void halWait(INT16U timeout) {
            do {
                _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
          _nop_();
            } while (--timeout);
        }
        
        void SpiInit(void)
        {
         CSN=0;
         SCK=0;
         CSN=1;
        }
        /*****************************************************************************************
        //函數名:CpuInit()
        //輸入:無
        //輸出:無
        //功能描述:SPI初始化程序
        /*****************************************************************************************/
        void CpuInit(void)
        {
         SpiInit();
         delay(5000);
        }
         
        //*****************************************************************************************
        //函數名:SpisendByte(INT8U dat)
        //輸入:發送的數據
        //輸出:無
        //功能描述:SPI發送一個字節
        //*****************************************************************************************
        INT8U SpiTxRxByte(INT8U dat)
        {
         INT8U i,temp;
         temp = 0;
         
         SCK = 0;
         for(i=0; i<8; i++)
         {
          if(dat & 0x80)
          {
           MOSI = 1;
          }
          else MOSI = 0;
          dat <<= 1;
          SCK = 1;
          _nop_();
          _nop_();
          temp <<= 1;
          if(MISO)temp++;
          SCK = 0;
          _nop_();
          _nop_(); 
         }
         return temp;
        }
        //*****************************************************************************************
        //函數名:void RESET_CC1100(void)
        //輸入:無
        //輸出:無
        //功能描述:復位CC1100
        //*****************************************************************************************
        void RESET_CC1100(void)
        {
         CSN = 0;
         while (MISO);
            SpiTxRxByte(CCxxx0_SRES);   //寫入復位命令
         while (MISO);
            CSN = 1;
        }
        //*****************************************************************************************
        //函數名:void POWER_UP_RESET_CC1100(void)
        //輸入:無
        //輸出:無
        //功能描述:上電復位CC1100
        //*****************************************************************************************
        void POWER_UP_RESET_CC1100(void)
        {
         CSN = 1;
         halWait(1);
         CSN = 0;
         halWait(1);
         CSN = 1;
         halWait(41);
         RESET_CC1100();     //復位CC1100
        }
        //*****************************************************************************************
        //函數名:void halSpiWriteReg(INT8U addr, INT8U value)
        //輸入:地址和配置字
        //輸出:無
        //功能描述:SPI寫寄存器
        //*****************************************************************************************
        void halSpiWriteReg(INT8U addr, INT8U value)
        {
            CSN = 0;
            while (MISO);
            SpiTxRxByte(addr);  //寫地址
            SpiTxRxByte(value);  //寫入配置
            CSN = 1;
        }
        //*****************************************************************************************
        //函數名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
        //輸入:地址,寫入緩沖區,寫入個數
        //輸出:無
        //功能描述:SPI連續寫配置寄存器
        //*****************************************************************************************
        void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
        {
            INT8U i, temp;
         temp = addr | WRITE_BURST;
            CSN = 0;
            while (MISO);
            SpiTxRxByte(temp);
            for (i = 0; i < count; i++)
          {
                SpiTxRxByte(buffer[i]);
            }
            CSN = 1;
        }
        //*****************************************************************************************
        //函數名:void halSpiStrobe(INT8U strobe)
        //輸入:命令
        //輸出:無
        //功能描述:SPI寫命令
        //*****************************************************************************************
        void halSpiStrobe(INT8U strobe)
        {
            CSN = 0;
            while (MISO);
            SpiTxRxByte(strobe);  //寫入命令
            CSN = 1;
        }
         
         
        //*****************************************************************************************
        //函數名:INT8U halSpiReadReg(INT8U addr)
        //輸入:地址
        //輸出:該寄存器的配置字
        //功能描述:SPI讀寄存器
        //*****************************************************************************************
        INT8U halSpiReadReg(INT8U addr)
        {
         INT8U temp, value;
            temp = addr|READ_SINGLE;//讀寄存器命令
         CSN = 0;
         while (MISO);
         SpiTxRxByte(temp);
         value = SpiTxRxByte(0);
         CSN = 1;
         return value;
        }
        
        //*****************************************************************************************
        //函數名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
        //輸入:地址,讀出數據后暫存的緩沖區,讀出配置個數
        //輸出:無
        //功能描述:SPI連續寫配置寄存器
        //*****************************************************************************************
        void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
        {
            INT8U i,temp;
         temp = addr | READ_BURST;  //寫入要讀的配置寄存器地址和讀命令
            CSN = 0;
            while (MISO);
         SpiTxRxByte(temp);  
            for (i = 0; i < count; i++)
         {
                buffer[i] = SpiTxRxByte(0);
            }
            CSN = 1;
        }
        
        //*****************************************************************************************
        //函數名:INT8U halSpiReadReg(INT8U addr)
        //輸入:地址
        //輸出:該狀態寄存器當前值
        //功能描述:SPI讀狀態寄存器
        //*****************************************************************************************
        INT8U halSpiReadStatus(INT8U addr)
        {
            INT8U value,temp;
         temp = addr | READ_BURST;  //寫入要讀的狀態寄存器的地址同時寫入讀命令
            CSN = 0;
            while (MISO);
            SpiTxRxByte(temp);
         value = SpiTxRxByte(0);
         CSN = 1;
         return value;
        }
        //*****************************************************************************************
        //函數名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings)
        //輸入:無
        //輸出:無
        //功能描述:配置CC1100的寄存器
        //*****************************************************************************************
        void halRfWriteRfSettings(void)
        {
         halSpiWriteReg(CCxxx0_FSCTRL0,  rfSettings.FSCTRL2);//自已加的
            // Write register settings
            halSpiWriteReg(CCxxx0_FSCTRL1,  rfSettings.FSCTRL1);
            halSpiWriteReg(CCxxx0_FSCTRL0,  rfSettings.FSCTRL0);
            halSpiWriteReg(CCxxx0_FREQ2,    rfSettings.FREQ2);
            halSpiWriteReg(CCxxx0_FREQ1,    rfSettings.FREQ1);
            halSpiWriteReg(CCxxx0_FREQ0,    rfSettings.FREQ0);
            halSpiWriteReg(CCxxx0_MDMCFG4,  rfSettings.MDMCFG4);
            halSpiWriteReg(CCxxx0_MDMCFG3,  rfSettings.MDMCFG3);
            halSpiWriteReg(CCxxx0_MDMCFG2,  rfSettings.MDMCFG2);
            halSpiWriteReg(CCxxx0_MDMCFG1,  rfSettings.MDMCFG1);
            halSpiWriteReg(CCxxx0_MDMCFG0,  rfSettings.MDMCFG0);
            halSpiWriteReg(CCxxx0_CHANNR,   rfSettings.CHANNR);
            halSpiWriteReg(CCxxx0_DEVIATN,  rfSettings.DEVIATN);
            halSpiWriteReg(CCxxx0_FREND1,   rfSettings.FREND1);
            halSpiWriteReg(CCxxx0_FREND0,   rfSettings.FREND0);
            halSpiWriteReg(CCxxx0_MCSM0 ,   rfSettings.MCSM0 );
            halSpiWriteReg(CCxxx0_FOCCFG,   rfSettings.FOCCFG);
            halSpiWriteReg(CCxxx0_BSCFG,    rfSettings.BSCFG);
            halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2);
         halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1);
            halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0);
            halSpiWriteReg(CCxxx0_FSCAL3,   rfSettings.FSCAL3);
         halSpiWriteReg(CCxxx0_FSCAL2,   rfSettings.FSCAL2);
         halSpiWriteReg(CCxxx0_FSCAL1,   rfSettings.FSCAL1);
            halSpiWriteReg(CCxxx0_FSCAL0,   rfSettings.FSCAL0);
            halSpiWriteReg(CCxxx0_FSTEST,   rfSettings.FSTEST);
            halSpiWriteReg(CCxxx0_TEST2,    rfSettings.TEST2);
            halSpiWriteReg(CCxxx0_TEST1,    rfSettings.TEST1);
            halSpiWriteReg(CCxxx0_TEST0,    rfSettings.TEST0);
            halSpiWriteReg(CCxxx0_IOCFG2,   rfSettings.IOCFG2);
            halSpiWriteReg(CCxxx0_IOCFG0,   rfSettings.IOCFG0);   
            halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1);
            halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0);
            halSpiWriteReg(CCxxx0_ADDR,     rfSettings.ADDR);
            halSpiWriteReg(CCxxx0_PKTLEN,   rfSettings.PKTLEN);
        }
        //*****************************************************************************************
        //函數名:void halRfSendPacket(INT8U *txBuffer, INT8U size)
        //輸入:發送的緩沖區,發送數據個數
        //輸出:無
        //功能描述:CC1100發送一組數據
        //*****************************************************************************************
        void halRfSendPacket(INT8U *txBuffer, INT8U size)
        {
         halSpiWriteReg(CCxxx0_TXFIFO, size);
            halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size); //寫入要發送的數據
            halSpiStrobe(CCxxx0_STX);  //進入發送模式發送數據
            // Wait for GDO0 to be set -> sync transmitted
            while (!GDO0);
            // Wait for GDO0 to be cleared -> end of packet
            while (GDO0);
         halSpiStrobe(CCxxx0_SFTX);
         delay(20);
        }
        
        void setRxMode(void)
        {
            halSpiStrobe(CCxxx0_SRX);  //進入接收狀態
        }
        /*
        // Bit masks corresponding to STATE[2:0] in the status byte returned on MISO
        #define CCxx00_STATE_BM                 0x70
        #define CCxx00_FIFO_BYTES_AVAILABLE_BM  0x0F
        #define CCxx00_STATE_TX_BM              0x20
        #define CCxx00_STATE_TX_UNDERFLOW_BM    0x70
        #define CCxx00_STATE_RX_BM              0x10
        #define CCxx00_STATE_RX_OVERFLOW_BM     0x60
        #define CCxx00_STATE_IDLE_BM            0x00
        static INT8U RfGetRxStatus(void)
        {
         INT8U temp, spiRxStatus1,spiRxStatus2;
         INT8U i=4;// 循環測試次數
            temp = CCxxx0_SNOP|READ_SINGLE;//讀寄存器命令
         CSN = 0;
         while (MISO);
         SpiTxRxByte(temp);
         spiRxStatus1 = SpiTxRxByte(0);
         do
         {
          SpiTxRxByte(temp);
          spiRxStatus2 = SpiTxRxByte(0);
          if(spiRxStatus1 == spiRxStatus2)
          {
           if( (spiRxStatus1 & CCxx00_STATE_BM) == CCxx00_STATE_RX_OVERFLOW_BM)
           {
                       halSpiStrobe(CCxxx0_SFRX);
              return 0;
           }
              return 1;
          }
           spiRxStatus1=spiRxStatus2;
         }
         while(i--);
         CSN = 1;
            return 0; 
        }
         */
        INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length)
        {
            INT8U status[2];
            INT8U packetLength;
         INT8U i=(*length)*4;  // 具體多少要根據datarate和length來決定
            halSpiStrobe(CCxxx0_SRX);  //進入接收狀態
         //delay(5);
            //while (!GDO1);
            //while (GDO1);
         delay(2);
         while (GDO0)
         {
          delay(2);
          --i;
          if(i<1)
             return 0;     
         }
            if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字節數不為0
         {
                //LED2 = 0;
          packetLength = halSpiReadReg(CCxxx0_RXFIFO);//讀出第一個字節,此字節為該幀數據長度
                //if (packetLength <= *length)   //如果所要的有效數據長度小于等于接收到的數據包的長度
          if(packetLength == 0x08)
          {
                    //halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //讀出所有接收到的數據
           halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, 8); //讀出所有接收到的數據
                    *length = packetLength;    //把接收數據長度的修改為當前數據的長度
               
                    // Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)
                    //halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2);  //讀出CRC校驗位
           halSpiStrobe(CCxxx0_SFRX);  //清洗接收緩沖區
          // delay(2);
          // halSpiStrobe(CCxxx0_SRX);  //進入接收狀態
          // delay(20);
           //delay(200);
           return 1;
                    //return (status[1] & CRC_OK);   //如果校驗成功返回接收成功
                }
           else
          {
                    *length = packetLength;
                    halSpiStrobe(CCxxx0_SFRX);  //清洗接收緩沖區
          // delay(2);
          // halSpiStrobe(CCxxx0_SRX);  //進入接收狀態
          // delay(20);
          // LED2 = 1;
                    return 0;
                }
            }
          return 0;
        }
        
        void main(void)
        {
         unsigned char key1_flag = 0;
         bit key2_flag = 0;
         unsigned int key1_scan_cnt = 400;
         unsigned int key2_scan_cnt = 300;
         INT8U i = 0;
         INT8U leng =0;
         INT8U tf =0;
         INT8U TxBuf[8]={1,2,3,4,5,6,7,8};  // 8字節, 如果需要更長的數據包,請正確設置
         INT8U RxBuf[8]={0}; 
         CpuInit();
         POWER_UP_RESET_CC1100();
         halRfWriteRfSettings();
         halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8);
         //halSpiStrobe(CCxxx0_SRX);  //進入接收狀態
         //setRxMode();
         while(1)
         {
             //setRxMode();
          delay(10);
             if(KEY1 == 0)
            {
           key1_scan_cnt--;
           if(!key1_scan_cnt)
           {   
            key1_scan_cnt = 300;
            if(key1_flag == 0)//判斷按鍵是否第1次按下
            {
             key1_flag = 1;//按鍵第1次按下標志位 
            }
           }
             }
          else
          {
           key1_scan_cnt = 300;
           if(key1_flag == 1)//判斷是否第一次按鍵動作松開
           {
            led1 = 0;
            led0 = 0;
            key1_flag = 2;
            key1_scan_cnt = 3;
            TxBuf[0] = 0x77;//第1個字節為0x77的數據幀,接收方收到后不需要返回應答
            while(1)
            {        
             halRfSendPacket(TxBuf,8); // Transmit Tx buffer data
             delay(100);    
             if(KEY1 == 0)//檢測按鍵是否第2次按下
             {
              key1_scan_cnt--;
              if(!key1_scan_cnt)
              {
               key1_flag = 3;//按鍵第2次按下
               key1_scan_cnt = 300;
               led1 = 1;
               led0 = 1;
               break;//當按鍵再次按下時退出長發狀態
              }
             }
             else//沒有第2次的按鍵動作
             {
              key1_scan_cnt = 3;
             }
            }
           }
           else if(key1_flag == 3)//是否為第2次的按鍵動作松開
           {
            key1_flag = 0;
           }
          }
         
             if(KEY2 == 0)
            {
           key2_scan_cnt--;
           if(!key2_scan_cnt)//確認按鍵正常按下
           {   
            key2_scan_cnt = 300;    
            key2_flag = 1;//按鍵第1次按下標志位   
           }
             }
          else
          {
           key2_scan_cnt = 300;
           if(key2_flag)//按鍵彈起
           {
            LED1 = 0;
            key2_flag = 0;
            delay(1000);
            TxBuf[0] = 0x88;        
            halRfSendPacket(TxBuf,8);// Transmit Tx buffer data    
            LED1 = 1;   
           }
            }
          leng =8; // 預計接受8 bytes
             if(halRfReceivePacket(RxBuf,&leng))
         // if(!GDO0)
          {      
          // leng =8; // 預計接受8 bytes
          // if(halRfReceivePacket(RxBuf,&leng))
           {
            if(RxBuf[0] == 0x77)//接收到的數據不需要返回應答
            {
             LED2 = ~LED2;
            }
            else if(RxBuf[0] == 0x88)//判斷接收到的數據是否需要返回應答
            {
             LED2 = 0;//接收數據正確,開接收指示燈
             LED1 = 0;//準備發送應答,開發送指示燈
             delay(1000);
             TxBuf[0] = 0x99;
             halRfSendPacket(TxBuf,8); // Transmit Tx buffer data  返回應答
             LED2 = 1;
             LED1 = 1;
            }
            else if(RxBuf[0] == 0x99)//應答數據
            {
             LED2 = 0;
             delay(1000);
             LED2 = 1;
            }
           }
          }
         } 
        }
        
        關閉窗口

        相關文章

        欧美性色欧美精品视频,99热这里只有精品mp4,日韩高清亚洲日韩精品一区二区,2020国自产拍精品高潮